

### Findings of the E2E NLG Challenge

#### Ondřej Dušek, Jekaterina Novikova and Verena Rieser Interaction Lab, Heriot-Watt University

INLG, Tilburg 7 November 2018

#### **E2E NLG Challenge**



- Task: generating restaurant recommendations
  simple input MR, no content selection (as in dialogue systems)
- New neural NLG: promising, but so far limited to small datasets
- "E2E" NLG: Learning from just pairs of MRs + reference texts
  - no alignment needed → easier to collect data

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]
Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

• Aim: Can new approaches do better if given more data?

Dušek, Novikova & Rieser – Findings of the E2E NLG Challenge

# **E2E Dataset**Novikova et al. SIGDIAL 2017 [ACL W17-5525]

- Well-known restaurant domain
- **Bigger** than previous sets
  - 50k MR+ref pairs (unaligned)

|                | Instances | MRs   | Refs/MR | Slots/MR | W/Ref | Sent/Ref |
|----------------|-----------|-------|---------|----------|-------|----------|
| E2E            | 51,426    | 6,039 | 8.21    | 5.73     | 20.34 | 1.56     |
| SF Restaurants | 5,192     | 1,914 | 1.91    | 2.63     | 8.51  | 1.05     |
| Bagel          | 404       | 202   | 2.00    | 5.48     | 11.55 | 1.03     |

- More diverse & natural
  - partially collected using pictorial MRs
  - noisier, but compensated by more refs per MR



name [Loch Fyne], eatType[restaurant],
food[Japanese], price[cheap],kid-friendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.



Serving low cost Japanese style cuisine, Loch Fyne caters for everyone, including families with small children.



### **E2E Challenge timeline**

- Mar '17: Training data released
- Jun '17: Baseline released
- Oct '17: Test MRs released (16<sup>th</sup>), submission deadline (31<sup>st</sup>)
- Dec '17: Evaluation results released Technical papers submission
- Mar '18: Final technical papers + full data released
- Nov '18: Results presented, outputs & ratings released

#### http://bit.ly/e2e-nlg

#### **E2E** Participants



- 17 participants (<sup>1</sup>/<sub>3</sub> from industry),
  62 submitted systems
  - success!
- 3 withdrew after automatic evaluation
  - $\rightarrow$  14 participants
  - 20 primary systems + baseline for human evaluation



# **Participants: Architectures**

- Seq2seq: 12 systems + baseline
  many variations & additions
- Other fully data-driven: 3 systems
  - 2x RNN with fixed encoder
  - 1x linear classifiers pipeline
- Rule/grammar-based: 2 systems
  - 1x rules, 1x grammar
- Templates: 3 systems
  - 2x mined from data, 1x handcrafted

Dušek, Novikova & Rieser - Findings of the E2E NLG Challenge

| TGEN         | HWU (baseline)     | seq2seq +   |
|--------------|--------------------|-------------|
| <b>S</b> LUG | UCSC Slug2Slug     | ensemble    |
| SLUG-ALT     | UCSC Slug2Slug     | SLUG + da   |
| TNT1         | UCSC TNT-NLG       | TGEN + da   |
| TNT2         | UCSC TNT-NLG       | TGEN + da   |
| Adapt        | AdaptCentre        | preproces   |
| CHEN         | Harbin Tech (1)    | seq2seq +   |
| GONG         | Harbin Tech (2)    | TGEN + re   |
| HARV         | HarvardNLP         | seq2seq +   |
| ZHANG        | Xiamen Uni         | subword s   |
| NLE          | Naver Labs Eur     | char-base   |
| SHEFF2       | Sheffield NLP      | seq2seq     |
| TR1          | Thomson Reuters    | seq2seq     |
| SHEFF1       | Sheffield NLP      | linear clas |
| ZHAW1        | Zurich Applied Sci | SC-LSTM     |
| ZHAW2        | Zurich Applied Sci | ZHAW1 +     |
| DANGNT       | Ho Chi Minh Ct IT  | rule-based  |
| FORGE1       | Pompeu Fabra       | grammar-    |
| FORGE3       | Pompeu Fabra       | templates   |
| TR2          | Thomson Reuters    | templates   |
| TUDA         | Darmstadt Tech     | handcraft   |
|              |                    |             |



reranking seq2seq + reranking ita selection ata augmentation ata augmentation ssing step + seq2seq + copy copy mechanism einforcement learning copy, diverse ensembling seg2seg ed seg2seg + reranking ssifiers trained with LOLS RNN LM + 1<sup>st</sup> word control reranking d 2-step -based mined from data mined from data ed templates 6

# **E2E Generation Challenges**



- Open vocabulary (restaurant names)
  - delexicalization placeholders
  - seq2seq: copy mechanisms, subword/character level
- Semantic control (realizing all attributes)
  - template/rule-based, **SHEFF1**: given by architecture
  - seq2seq: beam reranking MR classification/alignment (some systems)

#### Output diversity

- data augmentation / data selection
- diverse ensembling (HARV)
- preprocessing steps (ZHAW1, ZHAW2)

### Automatic evaluation: Word-overlap metrics

- Several commonly used
  - BLEU, NIST, METEOR, ROUGE, CIDEr
- Scripts provided
  - http://bit.ly/e2e-nlg
- Baseline very strong
- Seq2seq systems best, but some bad
- Segment-level correlation vs. humans weak (<0.2)





TGen 57.5% Slug 57.4% TNT1 57.3% NLE 57.0% TNT2 56.9% Harv 56.7% Zhang 56.6% Gong 56.3% TR1 55.6% Sheff1 55.4% DANGNT 54.0% Slug-alt 53.8% **ZHAW2** 53.1% TUDA 52.2% **ZHAW1** 52.1% Adapt 47.4% 46.9% Chen FORGe3 45.5% Sheff2 44.6% TR2 43.7% FORGe1 42.3% 0% 10% 20% 30% 40% 50% 8

word overlap metrics average



Novikova et al. NAACL 2018 [ACL N18-2012]



- Criteria: naturalness + overall quality
  - separate collection to lower correlation
  - input MR not shown to workers evaluating naturalness
- RankME relative comparisons & continuous scales
  - we found it to increase consistency vs. Likert scales / single ratings
- TrueSkill (Sakaguchi et al. 2014) fewer direct comparisons needed
  - significance clusters established by bootstrap resampling

# Human evaluation – example (Quality)



| System           | Output                                                                            | Rank | Score |
|------------------|-----------------------------------------------------------------------------------|------|-------|
|                  | name[Cotto], eatType[coffee shop], near[The Bakers]                               |      |       |
| TR2              | Cotto is a coffee shop located near The Bakers.                                   | 1    | 100   |
| <b>S</b> LUG-ALT | Cotto is a coffee shop and is located near The Bakers                             | 2    | 97    |
| TGEN             | Cotto is a coffee shop with a low price range. It is located near The Bakers.     | 3-4  | 85    |
| GONG             | Cotto is a place near The Bakers.                                                 | 3-4  | 85    |
| SHEFF2           | Cotto is a pub near The Bakers.                                                   | 5    | 82    |
|                  | name[Clowns], eatType[coffee shop], customer rating[3 out of 5], near[All Bar     | One] |       |
| SHEFF1           | Clowns is a coffee shop near All Bar One with a customer rating of 3 out of 5.    | 1-2  | 100   |
| ZHANG            | Clowns is a coffee shop near All Bar One with a customer rating of 3 out of 5 .   | 1-2  | 100   |
| FORGE3           | Clowns is a coffee shop near All Bar One with a rating 3 out of 5.                | 3    | 70    |
| ZHAW2            | A coffee shop near All Bar One is Clowns. It has a customer rating of 3 out of 5. | 4    | 50    |
| SHEFF2           | Clowns is a pub near All Bar One.                                                 | 5    | 20    |

### Human evaluation results



- 5 clusters each, clear winner
- Naturalness: Seq2seq dominates
  - diversity-attempting systems penalized
- Quality: more mixed
  - 2<sup>nd</sup> cluster all archs.
  - bottom clusters: seq2seq w/o reranking
- Overall winner: **SLUG**

| # | Rank  | System          |         | #      | Rank  | System           |
|---|-------|-----------------|---------|--------|-------|------------------|
| 1 | 1-1   | SHEFF2          |         | 1      | 1-1   | SLUG             |
|   | 2-3   | SLUG            |         |        | 2-4   | TUDA             |
|   | 2-4   | CHEN            |         |        | 2-5   | GONG             |
|   | 3-6   | HARV            |         |        | 3-5   | DANGNT           |
|   | 4-8   | NLE             |         |        | 3-6   | TGEN             |
|   | 4-8   | TGEN            |         |        | 5-7   | <b>S</b> LUG-ALT |
| 2 | 5-8   | DANGNT          |         |        | 6-8   | ZHAW2            |
|   | 5-10  | TUDA            |         | 2      | 7-10  | TNT1             |
|   | 7-11  | TNT2            |         |        | 8-10  | TNT2             |
|   | 9-12  | GONG            | <u></u> | 2      | 8-12  | NLE              |
|   | 9-12  | TNT1            | ופ      | 5      | 10-13 | ZHAW1            |
|   | 10-12 | ZHANG           | Ō       | )<br>/ | 10-14 | FORGE1           |
|   | 13-16 | TR1             | Ŭ       |        | 11-14 | SHEFF1           |
|   | 13-17 | <b>SLUG-ALT</b> |         |        | 11-14 | HARV             |
| 3 | 13-17 | SHEFF1          |         | 0      | 15-16 | TR2              |
|   | 13-17 | ZHAW2           |         | კ      | 15-16 | FORGE3           |
|   | 15-17 | ZHAW1           |         |        | 17-19 | Αdapt            |
| Λ | 18-19 | FORGE1          |         | 4      | 17-19 | TR1              |
| 4 | 18-19 | ADAPT           | DAPT    |        | 17-19 | ZHANG            |
| E | 20-21 | TR2             |         |        | 20-21 | CHEN             |
| 2 | 20-21 | FORGE3          |         | 5      | 20-21 | SHEFF2           |

Naturalness

#### E2E: Lessons learnt



- (not strictly controlled setting!)
- Semantic control (realize all slots) crucial for seq2seq systems
  - beam reranking works well, attention-only performs poorly
- Open vocabulary delexicalization easy & good
  - other (copy mechanisms, sub-word/character models) also viable
- **Diversity** hand-engineered systems seem better
  - options for seq2seq: diverse ensembling, sampling...
  - might hurt naturalness
- Best method: rule-based or seq2seq with reranking

#### Dušek, Novikova & Rieser - Findings of the E2E NLG Challenge

#### Get E2E NLG data & metrics & system outputs with rankings: http://bit.ly/e2e-nlg

F2F dataset:

RankMF eval

• Contact us:

Thanks

o.dusek@hw.ac.uk @tuetschek

v.t.rieser@hw.ac.uk @verena\_rieser [ACL W17-5525] Novikova et al. NAACL '18 [ACL N18-2012]

Novikova et al. SIGDIAL '17

• More detailed results analysis coming soon (on arXiv)!





#### Automatic evaluation: Textual metrics



- Same diversity/complexity metrics used to evaluate the dataset
- Seq2seq-based systems typically less syntactic complexity
- Rare words ratio typically same as in data (except FORGE1)
- Highest MSTTR:
  - rule/grammar-based systems
  - systems aiming at diversity (ZHAW1, ZHAW2, ADAPT, SLUG-ALT)
- Data-driven systems: shorter outputs than rule-based
  - low-performing seq2seq: very short outputs (CHEN, SHEFF2)

| % D-Level0-2  |       | % D-Lev       | /el6-7 | Rare word     | ls (LS2) | MSTTR         | -50  | Average length |       |  |
|---------------|-------|---------------|--------|---------------|----------|---------------|------|----------------|-------|--|
| ZHANG         | 88.98 | SHEFF1        | 40.00  | FORGE1        | 0.67     | train+dev set | 0.69 | TUDA           | 30.05 |  |
| TNT2          | 85.80 | FORGE1        | 34.77  | SHEFF2        | 0.61     | TR2           | 0.63 | FORGE1         | 26.73 |  |
| TNT1          | 83.84 | SLUG-ALT      | 24.97  | ZHAW1         | 0.59     | FORGE1        | 0.62 | TR2            | 26.00 |  |
| GONG          | 82.69 | ZHAW1         | 23.84  | CHEN          | 0.58     | ADAPT         | 0.61 | ZHAW1          | 25.05 |  |
| Slug          | 81.53 | FORGE3        | 18.87  | TR2           | 0.57     | test set      | 0.58 | ZHAW2          | 24.66 |  |
| TR1           | 80.39 | TR2           | 18.52  | FORGE3        | 0.57     | ZHAW1         | 0.56 | DANGNT         | 23.67 |  |
| DANGNT        | 79.66 | ZHAW2         | 16.93  | test set      | 0.57     | ZHAW2         | 0.56 | GONG           | 23.43 |  |
| NLE           | 79.42 | GONG          | 16.90  | Adapt         | 0.56     | FORGE3        | 0.55 | FORGE3         | 23.10 |  |
| CHEN          | 78.99 | train+dev set | 15.44  | ZHAW2         | 0.56     | DANGNT        | 0.53 | ADAPT          | 22.93 |  |
| HARV          | 76.84 | test set      | 14.64  | HARV          | 0.56     | SLUG-ALT      | 0.52 | SLUG-ALT       | 22.89 |  |
| SHEFF2        | 76.53 | Slug          | 11.30  | TNT2          | 0.56     | TUDA          | 0.52 | TNT1           | 22.83 |  |
| TGEN          | 76.42 | TUDA          | 10.48  | ZHANG         | 0.56     | Tgen          | 0.50 | test set       | 22.45 |  |
| ADAPT         | 71.56 | Ασαρτ         | 8.80   | DANGNT        | 0.55     | Slug          | 0.50 | TGEN           | 22.45 |  |
| test set      | 67.80 | TNT1          | 8.05   | TGEN          | 0.54     | HARV          | 0.49 | Slug           | 22.18 |  |
| train+dev set | 65.92 | HARV          | 6.82   | SHEFF1        | 0.54     | SHEFF1        | 0.49 | TNT2           | 21.89 |  |
| FORGE3        | 65.36 | TGEN          | 6.50   | NLE           | 0.54     | NLE           | 0.49 | NLE            | 21.74 |  |
| TR2           | 63.03 | NLE           | 5.08   | TR1           | 0.54     | TNT1          | 0.49 | HARV           | 21.47 |  |
| TUDA          | 62.43 | TR1           | 5.01   | GONG          | 0.53     | TNT2          | 0.49 | SHEFF1         | 21.11 |  |
| FORGE1        | 61.65 | DANGNT        | 4.62   | TUDA          | 0.52     | TR1           | 0.47 | TR1            | 20.93 |  |
| ZHAW1         | 60.03 | TNT2          | 4.13   | TNT1          | 0.52     | GONG          | 0.46 | train+dev set  | 19.41 |  |
| SLUG-ALT      | 59.06 | SHEFF2        | 2.08   | train+dev set | 0.52     | ZHANG         | 0.45 | ZHANG          | 19.05 |  |
| ZHAW2         | 56.52 | ZHANG         | 1.95   | SLUG-ALT      | 0.51     | CHEN          | 0.42 | SHEFF2         | 15.68 |  |
| SHEFF1        | 37.93 | CHEN          | 0.99   | Slug          | 0.51     | SHEFF2        | 0.41 | CHEN           | 14.67 |  |

Dušek, Novikova & Rieser – Findings of the E2E NLG Challenge



### **Output similarity**

word-overlap metrics
systems against each other

si ref.

eference system.

- seq2seq most similar
  - except low-performing
- lower similarity for diversity-attempting
- lower similarity for template/rule-based

| test set    | -0.86         | 0 52 ( | 1 52            | 0 49   | 0 52 0                | 51 0                 | 41 0 38                         | 0.51 | 0 52 0  | 52 0 <sup>°</sup>   | 34 0 4              | 9 0 5               | 0 47 (              | 0 48 ( | 1 4 9 1      | 0 48             | 360    | 1 29 (          | 3704                    | 7      | System                       | Mean         |  |
|-------------|---------------|--------|-----------------|--------|-----------------------|----------------------|---------------------------------|------|---------|---------------------|---------------------|---------------------|---------------------|--------|--------------|------------------|--------|-----------------|-------------------------|--------|------------------------------|--------------|--|
| ngle random | - 1           | 0.31 ( | 0.31            | 0.29   | 0.32 0.               | .31 0.               | 25 0.23                         | 0.31 | 0.31 0. | 31 O.               | .2 0.3              | 3 0.3               | 0.29                | 0.3 (  | ).31         | 0.29             | 0.22 0 | ).25 C          | 0.24 0.29               | 9<br>9 | ♡TGEN                        | 0.46         |  |
| TGen        | - 0.3         | 0.99   | ).57            | 0.45   | ).57 0.               | .56 0.               | 35 0.37                         | 0.5  | 0.52 0. | 57 0.:              | 28 0.4              | 8 0.5               | 0.41 (              | 0.43 ( | ).49         | 0.5              | 0.27 0 | ).32            | 0.3 0.3                 | 9      | $^{\heartsuit}$ <b>S</b> LUG | 0.46         |  |
| Anon2       | 0.3           | 0.56   | ).98            | 0.49   | 0.54 0.               | 51 0.                | 35 0.34                         | 0.6  | 0.5 0.  | 53 O.               | 27 0.4              | 2 0.44              | 0.44 (              | 0.46   | ).53         | 0.45 (           | 0.27 0 | ).32            | 0.3 0.3                 | 9      | <sup>♡</sup> TNT1            | 0.46         |  |
| Anon2-alt   | -0.28         | 0.46   | 0.5             | 1      | ).44 0.               | .42 0.               | 32 0.27                         | 0.48 | 0.42 0. | 46 0.:              | 23 0.3              | 5 0.36              | 0.41                | 0.43   | ).45         | 0.38             | 0.25 0 | 0.31 0          | 0.29 0.3                | 6      | ♡NLE                         | 0.45         |  |
| Anon3-1     | - 0.3         | 0.57(  | ).55            | 0.44   | ).99 <mark></mark> 0. | .57 0.               | 34 0.36                         | 0.5  | 0.51 0. | 56 0.:              | 27 0.5              | 1 0.54              | 0.4 (               | 0.42   | ).46         | 0.45 (           | 0.260  | 0.310           | ).29 <mark>0.3</mark> 9 | 9      | <sup>♡</sup> TNT2            | 0.45         |  |
| Anon3-2     | -0.29         | 0.56(  | ).52            | 0.42   | ).57 <mark>0</mark> . | .99 <mark>0</mark> . | 33 0.37                         | 0.47 | 0.51 0. | 54 0.:              | 27 0.4              | 8 0.52              | 0.39(               | 0.41   | ).47 (       | 0.47             | 0.260  | 0.310           | ).28 <mark>0.3</mark> 1 | 8      | <sup>♥</sup> GONG            | 0.44         |  |
| Anon5       | -0.25         | 0.36(  | 0.37            | 0.33(  | 0.35 0.               | .34                  | 1 0.24                          | 0.37 | 0.35 0. | 35 0.               | 22 0.3              | 30.33               | 0.33(               | 0.34(  | ).34         | 0.34(            | 0.240  | ).260           | 0.25 0.3                | 2      | <sup>♥</sup> HARV            | 0.44         |  |
| Chen        | -0.26         | 0.43   | J.39            | 0.31   | 0.41 0.<br>0.48 0     | .41 0.<br>44 0       | 29 <mark>0.98</mark><br>34 0 28 | 0.35 | 0.44 0. | 41 0<br>47 0        | 36 U.4<br>23 0 3    | 4 0.5<br>7 0 37     | 0.3                 | 0.320  | 1.30         | 0.36             | 0.230  | .200            | 0.23 0.3                | a<br>I | ♦SHEFE1                      | 0.42         |  |
| Harv        | - 0.3         | 0.53(  | 0.51            | 0.42   | ).51 0.               | .51 0.               | 34 0.4                          | 0.46 | 0.99 0. | 51 O.               | 29 0.9<br>29 0.4    | 8 0.55              | 0.39(               | 0.41   | ).45         | 0.44 (           | 0.27   | 0.3 0           | 0.28 0.3                | 9      | <sup>♥</sup> <b>ZHANG</b>    | 0.12<br>0.42 |  |
| NLE         | -0.29         | 0.57 ( | 0.53            | 0.45 ( | ).55 0.               | .54 0.               | 34 0.37                         | 0.49 | 0.5 0.  | <mark>99</mark> 0.: | 27 0.4              | 60.51               | 0.4                 | 0.4    | ).49         | 0.44 (           | 0.260  | ).31 (          | 0.29 0.39               | 9      | *DANCNT                      | 0.42         |  |
| Sheff2      | -0.22         | 0.31   | 0.3             | 0.26   | 0.3 0.                | .29 0.               | 25 0.36                         | 0.28 | 0.31 0  | .3 0.               | 97 0.3              | 4 0.34              | 0.27 (              | 0.28   | ).28         | 0.3              | 0.2 0  | ).23 (          | 0.21 0.28               | 8      |                              | 0.42         |  |
| TR1         | -0.29         | 0.47 ( | ).43            | 0.35   | 0.51 0.               | .48 0.               | 32 0.41                         | 0.39 | 0.48 0. | 46 <b>0</b> .:      | 32 <mark>0.9</mark> | <mark>8</mark> 0.56 | 0.34 (              | 0.35 ( | ).38         | 0.43             | 0.26 0 | ).29 (          | ).28 <mark>0.3</mark>   | 8      |                              | 0.42         |  |
| Zhang       | -0.29         | 0.5 (  | ).45            | 0.37   | 0.54 0.               | .52 0.               | 33 0.48                         | 0.4  | 0.55 0. | 51 O.:              | 34 0.5              | 7 <mark>0.98</mark> | 0.34 (              | 0.36   | ).41         | 0.43             | 0.25 0 | ).28 (          | 0.26 0.3                | 6      |                              | 0.41         |  |
| Anon4-1     | -0.27         | 0.42 ( | 0.46            | 0.41(  | 0.41 0.               | .39 0.               | 32 0.24                         | 0.46 | 0.39 0  | .4 0.               | 22 0.3              | 4 0.32              | 1 (                 | 0.48   | 0.4          | 0.38 (           | ).27   | 0.3 0           | ).29 <mark>0.3</mark> 9 | 9      | <sup>×</sup> SLUG-ALT        | 0.40         |  |
| Anon4-2     | -0.28         | 0.44 ( | ).48            | 0.43(  | ).42 0.               | .41 0.               | 33 0.26                         | 0.47 | 0.4 0.  | 41 0.:              | 24 0.3              | 5 0.34              | 0.48 <mark>0</mark> | 0.99   | ).42         | 0.41             | 0.27 0 | 0.31            | 0.3 0.4                 | 1      | VZHAW1                       | 0.39         |  |
| Sheff1      | -0.29         | 0.48(  | ).53            | 0.44 ( | 0.45 0.               | .46 0.               | 32 0.32                         | 0.5  | 0.44 0. | 49 0.:              | 26 0.3              | 7 0.4               | 0.39(               | 0.41   | ).99         | 0.43(            | 0.26   | 0.3 0           | 0.29 0.3                | 7      | •TUDA                        | 0.39         |  |
| DANGNT      | -0.27         | 0.49(  | 0.45            | 0.37   | ).44 0.               | .46 0.               | 33 0.31                         | 0.41 | 0.430.  | 43 0.:<br>26 0      | 260.4               | 20.42               | 0.37                | 0.4    | ).43         | 0.96 (           | 0.280  | 0.320           | 0.29 0.4:               | 1      | <sup>♥</sup> <b>A</b> DAPT   | 0.34         |  |
| FORGe1      | -0.22         | 0.270  | J.28            | 0.250  | ).270.                | .26 0.               | 24 0.18                         | 0.28 | 0.270.  | 26 0.<br>21 0.      | 170.2               | 5 0.24              | 0.280               | 0.280  | 0.26         | 0.29 (<br>0.23 ( | ).990  | 0.260           | 0.23 0.3                | 2      | <sup>♡</sup> CHEN            | 0.34         |  |
| FURGes      | -0.24         | 0.320  | יככ.נ<br>1 דר ר | 0.311  | 0 3 0.                | .31 U.<br>29 N       | 25 0.23                         | 0.32 | 0.3 0.  | 29 0.               | 21 0.2<br>17 0 2    | 90.20<br>80.25      | 0.3 0               | 0.31   | 0.3 I<br>0 3 | 0.330            | ).200  | ) 25            | 1 0 3                   | 1      | <b>FORGE3</b>                | 0.32         |  |
| TUDA        | -0.26         | 0.37 ( | 0.37            | 0.33   | 0.36 0.               | .35 0.               | 29 0.21                         | 0.38 | 0.34 0. | 35 O.               | .2 0.3              | 4 0.3               | 0.37 (              | 0.39(  | 0.34         | 0.39             | 0.3    | 0.3 0           | 0.29 <mark>0.9</mark> ! | 5      | <b>◆</b> TR2                 | 0.31         |  |
|             | et -          | - ua   | - 2ר            | alt -  | -<br>-                |                      | - ua                            | - ɓւ | 2 4     | ΎΕ                  | - 12 -<br>81 -      | - פר                |                     | -2 -   | f1 -         | Ļ                | e1 -   | - <sup>23</sup> | 32 -<br>DA -            |        | random test set 1            | ef. 0.31     |  |
|             | ando<br>est s | TG     | Anoi            | on2-i  | non3                  | non3                 | Chi Allo                        | Gol  | На      | N Joho              | I I                 | Zhai                | non4                | non4   | Shef         | ANG              | ORG    | ORG             | T D                     |        | <b>*</b> FORGE1              | 0.29         |  |
|             | om t          |        |                 | An     | ∢ ,                   | ∢                    |                                 |      |         |                     |                     |                     | A                   | A      |              | D                | ш      | ш               |                         |        | <sup>♡</sup> Sheff2          | 0.28         |  |
|             | ref. fi       |        |                 |        |                       |                      |                                 |      | test    | ted                 | syst                | em                  |                     |        |              |                  |        |                 |                         | _      |                              |              |  |

#### **E2E Dataset: domain**



- Simple, well-known: restaurant information
- 8 attributes (slots)
  - most enumerable
  - 2 open: name/near (restaurant names)

| Attribute      | Data Type       | Example value                 |
|----------------|-----------------|-------------------------------|
| name           | verbatim string | The Eagle,                    |
| eatType        | dictionary      | restaurant, pub,              |
| familyFriendly | boolean         | Yes / No                      |
| priceRange     | dictionary      | cheap, expensive,             |
| food           | dictionary      | French, Italian,              |
| near           | verbatim string | market square, Cafe Adriatic, |
| area           | dictionary      | riverside, city center,       |
| customerRating | enumerable      | 1 of 5 (low), 4 of 5 (high),  |

• Aim: more varied, challenging texts than previous similar sets

# **E2E Data collection**

Novikova et al. INLG 2016 [ACL W16-6644]



- Crowdsourcing on CrowdFlower
- Combination of pictorial & textual MR representation (20:80)
- Pictorial MRs:
  - elicit more varied, better rated texts
  - cause less lexical priming
  - add some noise (not all attributes always realized)
- Quality control
- More references collected for 1 MR



name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], kid-friendly[yes]

#### Novikova et al. SIGDIAL 2017 [ACL W17-5525]



# **E2E Dataset comparison**

#### • vs. BAGEL & SFRest:

- Lexical richness
  - higher lexical diversity (Mean Segmental Token-Type Ratio)
  - higher proportion of rare words

| Delexicalized sets            | E2E   | SFRest | SFRest-inf | BAGEL |
|-------------------------------|-------|--------|------------|-------|
| Distinct tokens               | 2,675 | 504    | 405        | 183   |
| Lexical sophistication (LS2)  | 0.600 | 0.323  | 0.317      | 0.317 |
| Type-token ratio (TTR)        | 0.002 | 0.012  | 0.013      | 0.035 |
| Mean segmental TTR (MSTTR-50) | 0.663 | 0.602  | 0.553      | 0.478 |
|                               |       |        |            |       |

- Syntactic richness
  - more complex sentences (D-Level)



#### The Vaults is an Indian restaurant.

#### Cocum is a very expensive restaurant but the quality is great.

#### The coffee shop Wildwood has fairly priced food, while being in the same vicinity as the Ranch.

Serving cheap English food, as well as having a coffee shop, the Golden Palace has an average customer ranking and is located along the riverside.

### **Baseline model**

- TGen (http://bit.ly/TGen-nlg)
- Seq2seq + attention
- Beam reranking by MR classification
  - any differences w.r.t. input MR penalized
- Delexicalization
  - replacing with placeholders
  - open-set attributes only (name/near)
- Strong (near SotA)





## **Challenges: Semantic control**



- most systems attempt to realize all attributes
- template/rule-based: given by architecture no problem
- seq2seq: attention (all) + more:
  - beam reranking MR classification, heuristic aligner, attention weights
  - modifying attention (regularization)
- other data-driven:
  - ZHAW1, ZHAW2: semantic gates (SC-LSTM)
  - SHEFF1: given by architecture (realizing slots  $\rightarrow$  values)

# **Challenges: Open vocabulary**



- E2E data: name/near slots (restaurant names)
- mostly addressed by delexicalization (placeholders)
  - rule + template-based: all systems, all slots
  - data-driven: most systems, mostly name/near
- alternatives seq2seq systems:
  - copy mechanism (CHEN, HARV, ADAPT)
  - sub-word units (ZHANG)
  - character-level seq2seq (NLE)



# **Challenges: Diversity**

- data augmentation
  - to enlarge training set (SLUG)
  - for more robustness (TNT1, TNT2)
- data selection
  - using only the "most common" example: SHEFF1
  - using only more complex examples: **SLUG-ALT**
- diverse ensembling: HARV
- preprocessing
  - for diversity: ZHAW1, ZHAW2, ADAPT